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A b s t r a c t 

A four-node, quadrilateral smoothing element is
developed based upon a penalized-discrete-least-squares
variational formulation. The smoothing methodology
recovers C1-continuous stresses, thus enabling effective
a posteriori error estimation and automatic adaptive
mesh refinement. The element formulation is originated
with a five-node macro-element configuration consisting
of four triangular anisoparametric smoothing elements
in a cross-diagonal pattern. This element pattern enables
a convenient closed-form solution for the degrees of
freedom of the interior node, resulting from enforcing
explicitly a set of natural edge-wise penalty constraints.
The degree-of-freedom reduction scheme leads to a very
efficient formulation of a four-node quadrilateral
smoothing element without any compromise in robust-
ness and accuracy of the smoothing analysis. The appli-
cation examples include stress recovery and error estima-
tion in adaptive mesh refinement solutions for an
elasticity problem and an aerospace structural
component.

I n t r o d u c t i o n 

The displacement-based finite element method has
become a standard tool for structural analysis. However,
due to its inherent interelement stress discontinuity, it
generally requires a special post-processing or ‘recovery’
procedure to enable improved stress calculations.  The
improved stress predictions can further be utilized in a
posteriori error estimation that in turn enables
automatic mesh adaptivity.  The recovery procedures
developed to date can be classified as (a) local (i.e.,
element-level), (b) patch-based, or (c) global. The
simple averaging of nodal stresses from adjacent
elements is an example of the simplest patch-based
stress recovery.  Early attempts to employ global least-
squares procedures to obtain continuous stress fields
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were not widely adopted.1,2  Instead, local element-level
least-squares approaches appeared to be more attractive
because of their intrinsic computational efficiency.2,3

However, the local schemes do not recover a continuous
stress field, and a subsequent nodal averaging is
generally used to achieve the stress continuity along
element interfaces. With the recognition that certain
interior stresses exhibit superconvergent properties,4

there evolved a class of local procedures involving
‘projection’ of these stresses to the element boundary,
although other local procedures were also proposed.5

Recent developments in stress recovery procedures
have largely been motivated by a posteriori error
estimation,6 especially for use in automatic adaptive
mesh refinement.  In this context, polynomial patch
recovery procedures have been explored. Zienkiewicz and
Zhu7,8 developed the Superconvergent Patch Recovery
(SPR) procedure, and various modifications of their
approach have been proposed subsequently.9-11 These
procedures generally attempt to recover from the
superconvergent stress points a stress field with
superconvergent properties.  The latest formulation by
Boroomand and Zienkiewicz12,13 explored yet another
polynomial patch-based procedure which uses nodal
equilibrium rather than superconvergent stresses. In
general, patch procedures are used to recover the stresses
at nodes. If a node belongs to multiple patches, an
averaging procedure must be used. The continuous
stress field is then defined in an ad hoc manner by the
nodal stresses and the finite element displacement
interpolation functions.

A major departure from other procedures is the finite
element-based recovery methodology of Tessler and co-
workers.14-21  The methodology, which is based on the
minimization of a Penalized-Discrete-Least-Squares
(PDLS) error functional, is highly effective and is
designed to provide improved stress predictions with a
higher degree of smoothness and to obtain robust a
posteriori error estimates.

The error functional involves a discrete least-squares
term in which discrete finite element stresses are
compared with continuous recovered stresses, a penalty
constraint term that enforces C1-continuity of the recov-
ered stresses, and a curvature-control term that ensures
stability and robustness of the method. The post-
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processing is performed via the Smoothing Element
Analysis (SEA) which itself is a finite element method.
As such, SEA has its own mesh and element-based
interpolation functions which minimize the PDLS error
functional. The methodology is capable of recovering
superconvergent stresses of higher accuracy and continu-
ity than the original finite element stresses. The
approach is unique in that the recovered stress field is
essentially C1-continuous. In addition to achieving a
higher degree of continuity, SEA generally produces
more accurate stresses than the SPR method. The
smoothed stresses can be used for design since they
represent more accurate stresses than the ones obtained
directly from a finite element analysis. They can also be
employed in a posteriori error estimators.  Importantly,
SEA fits perfectly in any general purpose finite element
code since it has the same architecture as the standard
finite element method.22-24

The smoothing element developed by Tessler and co-
workers is a three-node triangle, incorporating a
quadratic interpolation for the stress, and linear
interpolations for the two normal stress derivatives.20,21

Since the PDLS error functional possesses a penalty-
constraint term, the use of anisoparametric
interpolations is key to enforcing pointwise C1 stress
continuity without developing the detrimental locking
effect. The method is especially robust and effective
when the smoothing element discretization is
represented by quadrilaterals consisting of four triangular
smoothing elements in a cross-diagonal pattern. The
resulting macro-element consists of five nodes, each
having three degrees-of-freedom (dof’s).

In this paper, a computationally efficient, four-node
quadrilateral smoothing element is developed. The
element is derived from a five-node macro-element
consisting of four triangular smoothing elements in a
cross-diagonal pattern.  This element pattern enables an
exact closed-form solution for the dof’s of the interior
node, resulting from enforcing explicitly a set of natural
edge-wise penalty constraints. The degree-of-freedom
reduction scheme gives rise to a four-node quadrilateral
smoothing element which has obvious computational
advantages over the five-node macro-element.  In
particular, its mesh results in nearly one-half the dof’s
than would a corresponding cross-diagonal mesh
constructed with triangular elements. Because an exact
closed-form solution is used for the reduction, no
compromise is made in terms of robustness and
accuracy by reducing the dof’s.

The conceptual framework and variational basis of
SEA/PDLS are first discussed. Then, smoothing equa-
tions for a triangular element are derived on the basis of
consistent anisoparametric interpolations for the stress
and two normal stress derivatives. Eight edge-wise

constraint equations are formulated for a five-node
macro-element  consisting of four triangles in a cross-
diagonal pattern.  Three of these equations are solved in
closed form for the dof’s corresponding to the interior
node.  The resulting transformation relations are used to
formulate the four-node smoothing element in a
computationally efficient manner. Numerical examples
include stress recovery and error estimation in adaptive
mesh refinement solutions for an elasticity problem and
an aerospace structural component.

S E A C o n c e p t u a l  F r a m e w o r k 

The basic conceptual framework of the present stress
recovery and error estimation approach is illustrated in
Fig. 1. Based upon a Finite Element Analysis (FEA),
which can be quite general and involve either linear or
nonlinear solution procedures, a subsequent Smoothing
Element Analysis (SEA) is carried out which discretizes
the same physical domain of the problem. The SEA
employs the discrete FEA stresses σh  as the prescribed
input data, using either Gauss integration point stresses
or superconvergent stresses. These stress locations are
preferred because of their superior accuracy compared to
other stresses. Alternatively, quantities other than stress
components can also be smoothed in the same manner,
for example, discrete displacement data,14 strain
measures,19 stress invariants, element strain energies, or
any other discrete data of interest.

The SEA itself is a finite element method and
requires its own mesh which in general can differ from
the finite element analysis mesh. Thus, the problem
domain Ω  is discretized with nel  smoothing finite

elements such that Ω Ω= ∪ =e
n eel

1 , where Ωe  is the

domain of a smoothing element. Within each smooth-
ing element, a penalized-discrete-least-squares (PDLS)
error functional is formulated and is based upon a
smooth stress σs and two stress-gradient variables.
These field variables are interpolated with compatible
shape functions that ensure a practically C1-continuous
stress field and C0-continuous stress gradients. The
total PDLS error functional contributed by all smooth-
ing elements in the discretization is minimized with
respect to all dof’s of the smoothing field variables.
The resulting smoothing equations, which have a stan-
dard linear algebraic form, produce an improved and
pointwise smooth stress field.  The recovered smooth
stress field can either be used directly for design calcula-
tions or they can be employed for a posteriori error
estimation in an automatic adaptive refinement process,
which is perhaps of greater significance.
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In developing a practical and theoretically appropriate
framework for the application of SEA to built-up
structural models, such as those found in aerospace and
automotive structures, it is important to realize that
stresses belonging to different structural components
may, in fact, be physically discontinuous where such
components intersect.  Moreover, in most cases,  stress
components in one shell or beam segment would lack
the same definition in another segment.  For these rea-
sons, it may not be meaningful to employ a scheme
which would require continuity of stresses along struc-
tural interfaces. Also, the usual averaging of stresses
along structural interfaces would often result in errone-
ous stress results at the given interface and the surround-
ing region.

The application of SEA to built-up structures is
undertaken herein by associating individual structural
segments with an independent SEA mesh. This
approach should be applicable to one-dimensional
(beams and trusses), two-dimensional (plates and
shells), and three-dimensional (solid element models)
structural finite element approximations.  Thus the
SEA discretization would consist of distinct domain-
based meshes, each totally independent of the adjacent
SEA domain.  The SEA domain-based framework will
be further illustrated on a built-up aerospace structure
discussed in the Numerical Results section.

E r r o r  F u n c t i o n a l 

The mathematical foundation of SEA is described for
a stress field defined on a flat two-dimensional domain,

Ω  = {x ∈ ℜ2 }, for which x = { , }x y  denotes the
position vector in Cartesian coordinates. As will be
shown subsequently, this two-dimensional framework
can be readily extended for application to typical built-
up aerospace shell structures.

For a single smoothing element within a SEA
mesh, the PDLS error functional may be expressed for a
given stress component σ  as
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where, for simplicity,  the usual tensorial subscripts for
the stress are omitted; a comma denotes partial
differentiation, α  and β  are dimensionless parameters,

and N denotes the total number of sampled discrete
stresses. For smoothing purposes, σ  is treated as a
scalar quantity. As will be demonstrated shortly, the
variables θi

s  (i=x,y) represent the first-order partial

derivatives of σs with respect to the spatial coordinates.
The finite element stress field is evaluated (or sampled)
in each element at xq  ( q  = 1, 2, …, ne), to obtain the

FEA

- Perform FEA

- Compute discrete σh stresses

SEA

- Perform SEA for each stress

- Recover accurate C 1, σs stresses

Error Estimation for Adaptive Refinement
- Compute error norms 
- Generate adaptive mesh σ σs − h

 

σh

σs

F

Fig. 1.  Smoothing element analysis for stress recovery and error estimation.
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set of discrete stresses { }σq
h , i.e., σ σq

h h
q≡ ( )x , and

where ne is the number of the sampled stresses within
the element. Because the highest partial derivative in (1)
is of order one, the field variables need only be
approximated with C0-continuous shape functions.
The functional is minimized with respect to all nodal
dof’s and yields a system of linear algebraic equations
which must be solved for the dof’s.

The first term in (1) is a normalized discrete least-
squares functional in which the squared ‘error’ between
the smoothed stress field and the sampled stress data is
computed for all sampled stresses.  The second term in
(1) represents a penalty functional which, for
sufficiently large α , enforces the derivatives of the
smoothed stress field σ,i

s  to approach the corresponding

θi
s  variables pointwise, i.e.,

σ θ, ( , )i
s

i
s ei x y→ = in Ω .    (2)

The greater the value of α , the closer the correlation
between σ,i

s  and θi
s , where C1 continuity of σs is

achieved as α → ∞ . For the practical application of the
method, α  needs to be sufficiently large in order to
enforce conditions (2); however, it should not be
excessively large to cause ill-conditioning of the
smooth solution.  The range α=102—106 has been
demonstrated in previous studies to be quite adequate for
these purposes. Because θi

s  are interpolated with

continuous functions, the smoothed stress field, for all
practical purposes, can achieve C1 continuity
throughout the Ω domain.

The third term in (1) involves squared first deriva-
tives of the θi

s  variables which, in accordance with (2),

represent the curvatures (i.e., second partial derivatives)
of the smoothed stress field in the limiting sense. (i.e.,
σ θ, ,ij

s
i j
s→ ) For the shape functions subsequently

considered for the smoothing element, the θi j
s
,  terms

represent the curvatures of the smoothed stress exactly.
The third term imposes a constraint condition on the
stress-curvature field, the severity of which is governed
by the value of the parameter β. When the sampled
stress data is perceived to be reasonably accurate, the β
parameter needs to be very small, particularly in relation
to the penalty parameter α . For the sampled stress data
exhibiting substantial error, larger values of β need to
be used to smooth or filter the data. A more general
form of (1) which enables the use of appropriate
weighting functions for the first and second terms can
be found in Ref. 20.

A notable observation regarding the functional form
of the penalty-constraint and curvature-control terms in
(1) is that they can be seen as mathematical analogs of
the transverse shear and bending energies in Reissner-
Mindlin plate theory. In this connection, successful
element technologies developed for plate elements can
equally be applied in this formulation. 25-27

S m o o t h i n g  E l e m e n t  I n t e r p o l a t i o n s 

The description of a convenient and effective
interpolation strategy for the field variables to be
approximated in (1) is addressed. Although the
functional in (1) admits C0-continuous shape functions
for the field variables σs, θx

s , and θy
s , the constraints in

(2) severely limit the suitable choice of the shape
functions. The reasons for these restrictions lie in the
character of these constraint equations. Unless appro-
priate interpolations are selected for the field variables,
the resulting solution will suffer from ‘locking’.  In the
context of the smoothing analysis, ‘locking’ would be
manifested by the smoothed solution that grossly
underestimates the stress field and is thus rendered to be
useless. The locking effect and the computational means
of avoiding it have been studied extensively, especially
in the context of shear-deformable bending finite
elements.25-27 Although the earlier approaches favored
reduced integration of the penalty term (a counterpart  of
the second term in (1)), the improved understanding of
this phenomenon in recent years seems to favor the use
of special interpolation schemes that ensure consistency
both in the constraint and variational sense. Such
interpolation approaches, interchangeably called inter-
dependent and anisoparametric, were originally
introduced by Tessler and co-workers26-28 in their shear-
deformable beam and plate formulations.

The three-node triangular smoothing element
employs the anisoparametric interpolations of the
lowest order, that is σs is interpolated with a complete

quadratic polynomial and the θx
s  and θy

s  employ linear

interpolations.  In reference to the notation in Fig. 2,
these smoothing element interpolations may be
expressed in matrix form as :

σ

θ θ

s
x x y y

e

x
s

x y
s

y

= + + ≡Ps Q s Q s Nd

Ps Ps

,

,= =
      (3)

where s = [σ1, σ2, σ3]
T, sx = [θx1, θx2, θx3]

T, and
sy = [θy1, θy2, θy3]

T are the vectors of nodal dof’s, and
P, Qx, and Qy are the row-vectors of linear and
quadratic shape functions, respectively. The inter-
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polation functions given in terms of triangular area-
parametric coordinates, z = [ζ1, ζ2, ζ3], can be written
as

Pi i= ζ , Q a axi k i j j i k= −1

2
( )ζ ζ ζ ζ ,

Q b byi j i k k i j= −1

2
( )ζ ζ ζ ζ (4)

in which

ζi
i i ic b x a y

A
= + +

2
,   a x xi k j= − ,   b y yi j k= − ,

c x y x yi j k k j= − ,   A a b a b= −1

2 3 2 2 3( ) ,

with A representing the area of a triangular element, and
xk, yk the nodal Cartesian coordinates; in the foregoing
equations, the subscripts are given by the cyclic
permutation of  i = 1, 2, 3,  j = 2, 3, 1, and  k = 3, 1,
2.  Note that these interpolations are consistent with a
three-node element  which has only three dof’s per node.

1

2

3
DOF

σ,  θ  ,  θx yx

y

Fig. 2.  Notation for three-node  anisoparametric
smoothing element.

The following attributes delineate  the most notable
benefits of the three-node anisoparametric triangular
element for utilization in SEA: (a) The element
interpolations (3) and (4) ensure that the gradient of the
smoothed stress, σ,i

s , is the same degree polynomial as

that representing θi
s , i.e., they are both linearly

distributed across Ωe; this interpolational consistency is
the key to the proper element-level resolution of
constraints (2), (b) The triangular element  permits a
one-to-one linear mapping between the global and
element (area-parametric) coordinates, thus allowing a
straightforward mapping of the sampled stress data onto
the smoothing element, and (c) The quadratic
distribution of σs is relatively low order and thus
ensures sufficient robustness of the method both in
terms of interpolation and extrapolation.

S m o o t h i n g  E q u a t i o n s 

The element smoothing  equations are obtained by
introducing (3) into (1) and taking the first variation

with respect to the nodal dof’s (i.e., δΦe = 0), giving
rise to

K d Fe e e=       (5)

where de is a vector containing the element nodal dof’s,
K e is a symmetric, element smoothing matrix, and Fe

is a consistent right-hand-side vector.  The element
matrices are given as
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where the element matrix K e is comprised of the error

matrix, Kε
e , the penalty-constraint matrix, Kα

e , and the

curvature-control matrix, Kβ
e ; and Nq≡N(xq). Equation

(6) is integrated using exact integration formulas. Note
that  integration of Kβ

e  is trivial since its integrand is

constant.
The global smoothing equations, Kd=F, are

obtained using the usual finite element assembly
operation and are solved for each stress component.
Conveniently, Ke  depends only on the element shape
functions that are evaluated at the sampled stress
locations and does not involve the stress values.  This
means that the smoothing of an individual stress
component corresponds to a different right-hand side
only, stored in the F  vector. Thus, regardless of the
number of smoothed quantities, the global K  matrix
need only be assembled and factored once. Employing a
very small β parameter (say, 10-5) assures that K  is
nonsingular even when the minimal number of
sampling stresses, N=3, is available.17  Although this
aspect permits a great range of possibilities for
constructing a SEA mesh, it is highly desirable for
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automation purposes that the SEA mesh be identical to
the FEA mesh.  

F o u r - N o d e  Q u a d r i l a t e r a l  v i a  E d g e 
C o n s t r a i n t s 

The three-node triangular interpolations described in
the previous section are particularly effective and robust
when the smoothing element discretization is locally
represented by quadrilaterals consisting of four triangular
smoothing elements in a cross-diagonal pattern.20,21 The
resulting macro-element has five nodes, and a total of
15 dof’s. Such a macro-element, in which large penalty
numbers ensure virtually exact satisfaction of the
constraints (2), can be used without causing any
locking-type deterioration, or even degradation in
accuracy.

Once (3) are introduced into (2), a straightforward
manipulation of the resulting equations produces three
edge-wise constraints per element.  It then follows that
the five-node macro-element (refer to Fig. 3) would
possess a total of eight such edge constraint equations –
four interior and four exterior.  Replacing the limiting
condition with that of equality in (2), which for large
values of α  should be valid for all practical purposes,
the edge constraint equations can be written in the form:

I n t e r i o r  E d g e  C o n s t r a i n t s 

σ σ θ θ θ θi i xi x i yi ya b− = + + +5 5 5 5 5( ) ( ), (7)

i = 1, 2, 3, 4

where a x xi i5 5
1

2
= −( ) ,   b y yi i5 5

1

2
= −( ),

E x t e r i o r  E d g e  C o n s t r a i n t s 

σ σ θ θ θ θi j ij xi xj ij yi yja b− = + + +( ) ( ), (8)

i = 1, 2, 3, 4;  j = 2, 3, 4, 1

where a x xij i j= −1

2
( ),   b y yij i j= −1

2
( )

Adding the four equations in (7) results in the solution
for σ5,

σ σ θ θ θ θ5 5 5
1 4

5 5
1

4
= − −[ ] − −

=
∑ i i xi i yi

i
x ya b a b

,

   (9)

where     a x x x x x= + + + −1

8
41 2 3 4 5( )

and     b y y y y y= + + + −1

8
41 2 3 4 5( ).

Furthermore, a straightforward manipulation of the
equations in (7) and (8) yields the matrix equation for
the θx5 and θy5 dof’s, i.e.,

θ
θ

θ
θ
θ
θ
θ

θ

θ

x

y Q

T
x

x

x

x

y

y

y

A

b b

a a

a

a a

a a

a

b

b b

b b

b

5

5

24 13

24 13

25

13 35

25 24

35

25

13 35

25 24

35

1

2

3

4

1

2

3

2

0

0

0

0












=

−
−











−
−

−
−































 θθy4







































 (10)

where AQ = 2(a13b24-a24b13) is the area of the
quadrilateral macro-element.  Equations (9) and (10)
provide the explicit relations between the dof’s at the
cross-diagonal node (node 5) and the vertex nodes of the
quadrilateral.

1
2

4 3

5

2

4
3

1

4

3

2

1

Explicit 
Constraints

DOF

σ,  θ  ,  θx y

Fig. 3.  Reduction of five-node macro-element to four-
node quadrilateral via edge constraints.

There are two equivalent approaches of employing
the reduction equations (9) and (10) to construct the
four-node quadrilateral:  (a) The element matrices for the
four triangles comprising the five-node macro-element
are pre-imposed and multiplied by the appropriate
transformation matrices, T j (j=1,4), resulting from (9)
and (10). This process is variationally consistent and is
commonly employed whenever transformations of dof’s
are performed, (b) Alternatively, (9) and (10) may be
used directly to modify the interpolation functions for
each of the four triangles in the five-node macro-
element.  Using the foremost method, the quadrilateral
element equations are as follows:

K d FQ
e

Q
e

Q
e=      (11)

where
K T K TQ

e
j
T

j
e

j
j

=
=
∑
1 4,

,   F T FQ
e

j
T

j
e

j

=
=
∑
1 4,

,

and

dQ
e

i xi yi
T

= { }σ θ θ, ,   (i=1,4),
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and where the summation is over the four triangular
elements.

It should be noted that static condensation of the
interior dof’s would result in the same solution as the
quadrilateral smoothing solution due to (11), however
the systems of equations are in different bases and are
therefore not identical.  In addition, static condensation
is not as computationally efficient as the explicit
reduction equations (9) and (10).

N u m e r i c a l  E x a m p l e s 

Two adaptive mesh refinement solutions are carried
out to demonstrate the robustness and accuracy of the
smoothing method and the computational efficiency of
the four-node smoothing element. First, a linearly
elastic plate with a small central hole under
compression is analyzed to verify the equivalence of the
five-node, cross-diagonal pattern macro-element and the
four-node quadrilateral, and to demonstrate the
computational efficiency of the four-node element. The
second numerical solution deals with a built-up
aerospace structural component under compression and
bending, where shell elements are located in different
planes. In this structure, stresses at shell junctions are
in general discontinuous, and for this reason, SEA is
performed on different domains independently.

All computations are obtained with NASA's
COMET-AR (COmputational MEchanics Testbed -
Adaptive Refinement) FEA code on an IBM RS6000
workstation using nine-node fully integrated Lagrange
shell elements.22 These shell elements are somewhat
stiff in bending, however, they are relatively insensitive
to mesh distortion – an aspect that is paramount in
adaptive mesh refinement.  No special consideration is
taken for modeling shell junctions. The smoothing
mesh generation is fully automatic and uses the same
quadrilateral mesh as that of the finite element models.
The FEA stresses are sampled at the 3x3 Gauss points.
In the smoothing mesh, these points are located with an
efficient search algorithm.24

E r r o r  E s t i m a t i o n  a n d  A d a p t i v e 
R e f i n e m e n t 

To demonstrate robustness of the smoothing element
due to element distortion, aspect-ratio tolerances are not
set in the adaptive refinement. Instead, the maximum
number of refinement meshes is specified.

Adaptive mesh refinement is performed using
transition-based refinement strategies with a specified
refinement tolerance. Any finite element exhibiting an
average element error, Rave, greater than the specified

refinement tolerance is subdivided into nine elements.
The average element error is computed as

R
E

U
N

ave
e

ref

elts

=






1

2

(12)

in which Ee is the element error energy norm given as

E de
s h T s h

e

= − −
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∫ −1

2
1
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2

( ) ( )S S C S S
Ω

Ω . (13)

The vectors Sh and Ss contain, respectively, eight FEA
and SEA shell stress components, Nelts is the number of
finite elements, and C is an 8x8 constitutive matrix.  In
(12), Uref is the reference strain energy defined as the
finite element strain energy corrected by the global
error23

Uref = Uh + E2      (14)

where E E Ue
N

s

elts

=












∑ 2

1

2

with Uh and Us denoting  the total strain energies
corresponding to the FEA and SEA stress fields,
respectively.

P l a t e  W i t h  H o l e 

A two-dimensional elasticity problem is analyzed to
demonstrate the robustness and efficiency of SEA in the
context of automatic adaptive refinement. A rectangular
aluminum plate (thickness = 0.1 in., E = 10 Msi, v =
0.3) is subjected to a tensile uniform displacement of
0.1 in. along an edge parallel to the y-axis that is
constrained to move only in the x direction (refer to
Fig. 4). The opposite edge is clamped and the edges
parallel to the x-axis are free. The problem is
particularly challenging because the hole is very small,
d/w=0.05, where d is the hole diameter. This aspect
tends to produce distorted elements around the hole
where a stress concentration takes place. Stress
singularities at the plate corners, where the displacement
boundary conditions are prescribed, provide another
challenge for the adaptive refinement.21

The initial mesh (Mesh 0) and three consecutive,
automatically generated meshes are depicted in Fig. 4.
At each refinement step, finite elements of greater
distortion and smaller size are generated. This is
especially true near the hole and at the plate corners –
the regions of high stress gradients.  By applying SEA
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Fig. 5.  Percent difference in Nx at point A due to five-
 and four-node quadrilateral SEA solutions.
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Fig. 6.  Comparison of CPU time for SEA with four-
and five-node quadrilaterals.

for each mesh, robust stress smoothing and error
estimation is achieved.  For Mesh 3, possessing 4,476
finite element dof’s, a global error norm of less than 1%
is obtained.

In Fig. 5, the equivalence between the five- and four-
node quadrilateral smoothing solutions for Mesh 0 is
demonstrated.  At point A located at the top of the hole
perimeter, where the axial stress resultant Nx is
maximum, the solutions approach the same value as the
penalty parameter α  becomes larger. Apparently, the
four-node solution does not suffer from any loss of
accuracy as a result of the explicit dof reduction inherent
in the element formulation.  Even at relatively small
values of α  (α=10), the two SEA solutions are within
0.0003%. This excellent degree of correlation is typical
for the highly stressed regions in the plate.

Having fewer dof’s and achieving equivalent results,
the four-node smoothing element is significantly more
efficient than the original five-node macro-element.
This aspect is clearly demonstrated in Fig. 6 which
compares CPU time for the two SEA modeling
approaches. Evidently, the larger the mesh, the greater
the computational savings attained. Thus, for Mesh 3,
the SEA computation is reduced by a factor of 6.6 with
the use of the four-node smoothing quadrilateral
element.

H a t - S t i f f e n e d  P a n e l 

The hat-stiffened panel is an example of a built-up
aerospace structural component. The panel dimensions
and boundary conditions in Fig. 7 are shown on the
initial (Mesh 0) discretization. The right edge of the
panel is subjected to a compressive axial (x-direction)
displacement of 0.1 in., including the stiffener edge.
The opposite edges of the panel and stiffener are fixed.
Along the side edges, symmetric boundary conditions
are prescribed. Whereas FEA is carried out with a nine-

x

y

w
=

10
"

20"

Mesh 0

Mesh 3Mesh 2

Mesh 1

A

Fig. 4. Plate with hole.  Initial (Mesh 0) and three refinement meshes.
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node Lagrange shell element, SEA is performed using
the four-node quadrilateral with the element parameters
set at α = 105 and β = 0.

From the structural response standpoint, the panel
has a number of challenging aspects: (a) the stiffness
eccentricity due to the hat stiffener located on only one
side of the panel causes local bending, (b) stress
concentrations occur along the hole perimeter, and (c)
singular stresses develop at the ends of the stiffener-
panel junctions, where stresses are transferred according
to the shear-lag mechanism.  It must be noted that the
initial mesh is very coarse and does not address any of
the aforementioned  issues.

Knowing that stress fields at the stiffener-panel shell
junctions are generally discontinuous, the application of
SEA is carried out on separate, independent domains to
avoid unphysical smoothing across these junctions. In
Fig. 8, the panel modeled with Mesh 0 is broken-up
into nine independent smoothing domains. Within each

domain, stress resultants are defined to correspond to a
convenient coordinate system, and these stress compo-
nents are smoothed independently. At each refinement
step, error estimation is undertaken based on the domain
smoothed stresses.  The distributions of the average
element error (refer to (12)) corresponding to the initial
and two adaptive refinement discretizations are shown in
Fig. 9.

An examination of specific stress distributions
computed via FEA and subsequent SEA for error
estimation, further validates the effectiveness and
robustness of the SEA stress recovery. The typical
stress results are depicted in Figs. 10 and 11, which also
display the number of dof’s and CPU time for the entire
FEA and SEA computations, including model
definition.  The SEA CPU time includes the smoothing
of all eight shell stress components (i.e., three in-plane
stress resultants, three bending moments, and two
transverse shear stress resultants) for each domain.

x

y
z

Ω
i

x

y

z

x

y

z

Fig. 8. Hat-stiffened panel. Independent smoothing domains.
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Fig. 7. Hat-stiffened panel.
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Figure 10 shows the Mx  bending moment
distribution, where the FEA results for Mesh 1 are
averaged at all common element boundaries, enforcing
stress continuity at the shell junctions.  This type of
post-processing is standard in most general-purpose
finite element codes. For reference purposes, the results
for a highly refined mesh (Mesh 2) are used.

Since the domain-based SEA does not enforce stress
continuity across domain junctions, the resulting
smoothed Mx  distribution is considerably more
accurate than that of the FEA, strongly resembling the
reference solution. Observe that SEA-based Mx
distribution is nearly continuous across domains where
it is expected, without being enforced (refer to the local
details in Fig. 10).  Also note that SEA-based Mx

Local Detail
(bottom view)

FEA/Mesh 1
DOF=7516
CPU(sec)=33

Ref./Mesh 2
DOF=25,532
CPU(sec)=196

SEA/Mesh 1
DOF=1500
CPU(sec)=50

-50
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-30

 30

-10

 10

M lbx ( )

Fig. 10.  Hat-stiffened panel. Distribution of Mx  bending moment.

Mesh 0

Mesh 1

Mesh 2

15 %

0 %

2 %

Rave

Fig. 9. Hat-stiffened panel mesh. Refinement steps and associated average
element error.
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Fig. 12.  FEA and SEA (Mesh 1) accuracy comparisons
for Nxy  at point A.

‘uncovers’ the physical stress concentrations that are not
particularly evident from the FEA results.

In Fig. 11, the in-plane shear resultant Nxy
distributions for Mesh 1 and Mesh 2 (reference) are
presented. These results demonstrate once again the
importance of the independent domain-based smoothing
for stress post-processing. For example, the Nxy stress
resultant defined in the stiffener which intersects the
base panel has a different definition than that in the base
panel.  Yet, unless special care is taken, these results
are commonly averaged at the shell junctions, producing
erroneous results at the intersections and surrounding
regions. With the domain-based SEA, however, stress
continuity is not enforced across the distinct domains
and physically meaningful stresses are recovered.
Observe the similarities of the SEA and reference
distributions.

An example of quantitative stress improvement
associated with the SEA recovery is shown in Fig. 12,
where, corresponding to Mesh 1, Nxy is examined in a
region of high-stress gradient. It is seen that at point A,
which is located close to the edge of the left stiffener,
there is a 38% reduction in the error for Nxy due to
smoothing.

100

101

102 103 104 105

E 
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Fig. 13.  FEA global percent error in energy norm vs.
dof’s.

It is evident that SEA-based stress recovery is effec-
tive in identifying stress concentrations in relatively
coarse FEA models, which allows for more rapid global
convergence in adaptive mesh refinement. The conver-
gence of the adaptive refinement process is illustrated in
Fig. 13.  In the figure, the global FEA percent error in
the energy norm (computed according to (14) by adding
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Fig. 11. Hat-stiffened panel. Distribution of Nxy  stress resultant.
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all element contributions) is plotted versus the number
of finite element dof’s.

C o n c l u d i n g  R e m a r k s 

A four-node quadrilateral smoothing element has
been developed as a result of an explicit dof reduction
solution.  The original five-node macro-element formed
with four smoothing triangles in a cross-diagonal
pattern has been reduced to a four-node quadrilateral by
exactly enforcing a set of natural edge-wise constraint
equations. The method, smoothing element analysis,
provides C1-continuous recovered stress distributions
based on the minimization of a penalized-discrete-least-
squares error functional. The error functional involves a
discrete least-squares term in which discrete finite
element stresses are compared with continuous recovered
stresses, a penalty constraint term that enforces C1-
continuity of the recovered stresses, and a curvature-
control term that ensures stability and robustness of the
method. The four-node element is shown to provide
equivalent results with the original triangular element
while significantly decreasing computational cost. The
recovered C1-continuous stress distributions have been
employed in a posteriori error estimation in NASA’s
COMET-AR finite element code, thus enabling efficient
adaptive mesh refinement solutions, including those for
built-up aerospace structures.
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